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A one-dimensional quantum Hamiltonian which is equivalent to the two- 
dimensional axial next-nearest-neighbor Ising (ANNNI) model is studied 
through the derivation and analysis of weak- and strong-coupling perturbation 
expansions. The phase diagram is constructed and the nature of the phase 
transitions discussed. In particular, we conclude (i) that there is no Lifshitz point 
on the ferromagnetic/paramagnetic phase boundary, (ii) there appears to be a 
Lifshitz point on the antiphase/paramagnetic phase, (iii) above the antiphase 
Lifshitz point the single transition from paramagnetism to the antiphase is 
probably continuous and marked by algebraic singularities, (iv) below the 
antiphase Lifshitz point the transition from paramagnetism to the antiphase is 
via two transitions, the upper of which is probably of the Kosterlitz/Thouless 
type, (v) the intermediate phase is presumably incommensurate although the 
perturbation methods do not directly probe this question. 

KEY WORDS: Incommensurate/commensurate transition; ANNNI model; 
quantum Hamiltonian; perturbation expansions. 

I. I N T R O D U C T I O N  

The axial next-nearest-neighbor Ising (or ANNNI) model has received 
considerable attention recently. Much of this interest stems from interest in 
systems exhibiting incommensurate/commensurate transitions (for a review 
see Vfllain(~). The ANNNI model appears to be one of the simplest 
models to exhibit such transitions. 
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In two dimensions, the dimensionality of interest here, the model is 
specified by the Hamiltonian 

= - + J2 ,/,+2j + J0s,,/;j+,) (1.1) 
(;,y3 

where the sum is over the sites of a square lattice, which are populated by 
Ising spin variables (s~j. = + 1). The nearest-neighbor interactions (Jo,Jz)  
are ferromagnetic, but the axial next-nearest-neighbor interaction (J2) is 
taken as antiferromagnetic and hence competing. Higher-dimensional ver- 
sions are defined similarly with the axial antiferromagnetic interaction 
restricted to one of the spatial axes of a hypercube. 

The ANNNI model was originally introduced (in three dimensions) by 
Elliot (2)) to explain the modulated phases observed in some rare earth 
compounds. Interest in the model was renewed by the work of Bak and von 
Boehm, (3) who investigated the phase diagram within mean field theory 
emphasizing the role of nonlinear excitations such as solitions, and of 
Selke (4) and Hornreich et al., (5) who initiated a Monte Carlo study. This 
was subsequently extended and refined by Selke and Fisher. (6) Other recent 
investigations of the two-dimensional ANNNI model are contained in 
Refs. 7-14. Much of this work will be discussed further below. One should 
also note the work of Fisher and Selke, (15) Villain and Gordon, (16) and 
Bak (xT) which has resolved much of the low-temperature phase diagram for 
dimensionalities greater than two. The high-temperature behavior of the 
three-dimensional model has also been probed by series expansions. (18) 

The aim of this series of papers is to investigate the two-dimensional 
ANNNI model from the point of view of its analogous quantum Hamilto- 
nian. The equivalence of a statistical mechanical system in d spatial 
dimensions and a quantum field theory in [ ( d -  1) + 1] space time dimen- 
sions is well known (for a recent review see Kognt('9)). In particular, the 
correspondence between a transfer matrix and a quantum Hamilto- 
nian (19-21) has been extensively exploited to study, by various methods, 
phase transitions in spin systems. (19,21-29) These successes have established 
these methods as a powerful approach to the study of phase transitions i n  
two dimensions. 

In this article, we set up the quantum Hamiltonian analog of the d -- 2 
ANNNI model, which is then studied by the analysis of systematic pertur- 
bation expansions of various physical quantities. The following paper 
supplements these results with finite lattice calculations and their analysis 
via finite-size, scaling. A letter reporting the Hamiltonian formulation and 
giving an initial summary of some of our results has already appeared. (8) 
The Hamiltonian formulation has also been developed by Rujan. (9) We 
shall discuss his results in more detail below. 
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This paper is arranged as follows. In the next section we derive the 
appropriate quantum Hamiltonian and describe a duality transformation 
linking the weak and strong coupling regimes. The soluble limits of the 
model are identified in Section 3, while Section 4 describes the derivation of 
systematic perturbation expansions. These are analyzed in Section 5. The 
paper closes with an overall summary and discussion in Section 6. 

2. QUANTUM HAMILTONIAN FORMULATION OF THE ANNNI 
MODEL 

2.1, Derivation of the Quantum Hamiltonian 

Let T denote the transfer matrix of a statistical mechanical system in a 
direction specified by the coordinate x d of a d-dimensional lattice. The 
analogous quantum Hamiltonian is then defined by (19-21) 

T =  1 - ~/-/+ O(~ 2) (2.1) 

where ~- is a small (strictly infinitesimal) parameter. The free energy of the 
statistical mechanical system (given by the largest eigenvalue of T) is now 
related to the ground-state energy of H, while the correlation length is given 
by the reciprocal of the mass gap of H. The Hamiltonian H refers to a 
quantum mechanical system on a ( d -  1)-dimensional lattice with time 
continuous. 

In almost all previous applications of this approach (see, e.g., Refs. 19, 
21, 26, 29), the statistical mechanical system of interest has been spatially 
isotropic. In the case of the ANNNI model (1.1) this is not so. Hence two 
different quantum Hamiltonians can, in principle? be defined using the 
transfer matrices in x and y directions, respectively. Here we consider only 
the latter. This Hamiltonian was described by Barber and Duxbury(8~; see 
also Rujan, (9) who discussed its derivation in some detail. For complete- 
ness, we briefly rederive the Hamiltonian here. 

Consider the row-to-row (y-direction) transfer matrix T of (1.1). Since 
the axial next-nearest-neighbor interaction J2 affects only the self-energy of 
a row, the method of Schultz, Lieb, and Mattis O~ can be easily extended 
to write T in terms of Pauli spin matrices, o x, a,~, defined on a one- 
dimensional chain. Hence, apart from a multiplicative constant, we obtain 

r =  v? /2v2v? /2  (2.2) 

where 

+ l 
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and 

V2 = exp(~m K~'ax ) (2.4) 

with K i = flJ/, i = 0, 1, 2 and 

K~ = - l ln( tanh  Ko) (2.5) 

We now seek to write T in the form (2.1) by appropriately defining a 
suitable expansion parameter o-. To do so, set o- = K~', K l = )w, and K 2 = 

- ~K 1 = -g )w ,  where )t and ~ are to be finite. If we now take the limit 

K 0--> oo, K], K2-+ 0 (2.6a) 

with 

h = K l e  2K~ = O(1), x = - K 2 / K  1 = O(1) (2.6b) 

we can neglect the noncommutitivity of V1 and V 2 to obtain 

T = 1 - r H  + 0(o -2) (2.7) 

as o- = K~ ~ e -  2Xo ~ O. The operator 

= - ~ 0,~- h ~  (o~o~+, - ~<a~+2)  (2.8) 
m m 

is our required quantum Hamiltonian analog of the d = 2 A N N N I  model 
(1.1), the parameter a a l I T  playing the role of temperature. 

The key assumption behind the quantum Hamiltonian approach to 
statistical mechanical systems is that the highly anisotropic limit (2.6) does 
not change the universality class of the problem. This assumption appears 
to be borne out by the various applications of the approach to standard 
(and spatially isotropic) statistical mechanical models (see references cited 
above). While we have no evidence that the limit is not as innocuous for the 
A N N N I  model, it is probably wise to keep this limit in mind when 
assessing the results of the Hamiltonian approach and comparing them to 
those of more conventional treatments of (1.1). 

2.2. Duality 

For ~ = 0, (2.8) reduces to the d = 1 transverse Ising model, which is 
the quantum Hamiltonian analog of the nearest-neighbor Ising model. (2~) 
In this case, Fradkin and Susskind (2J) showed that the model was self-dual 
under the transformation 

t~m~=O~O~+,, ~ =  I I  O~, (2.9) 
m ' < m  

Here the tz variables are again Pauli matrices but associated with the bonds 
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(sites of the dual lattice) of the chain, dual site m being on the bond 
connecting sites m and m + 1 of the original chain. 

The transformation (2.9) can also be applied to (2.8) to give (8'9) the 
dual Hamiltonian 

U s = - ~ ~ + ~ -  2`~(~m ~ -- X~,~+~)  (2.10) 
m m 

In writing this we have neglected the question of boundary conditions, 
which is valid in the thermodynamic limit. For finite chains some care is 
needed. (9'1~ The Hamiltonians (2.8) and (2.10) will form the basis of the 
calculations reported in this series of papers. 

3. E X A C T  R E S U L T S  

Neither (2.8) nor (2.10) for arbitrary 2, and x appears to be analytically 
diagonalizable. There are, however, four limits in which the eigenvalues can 
be obtained exactly. Moreover, an understanding of the behavior of (2.8) 
a n d / o r  (2.10) in these limits facilitates the analysis of the general case by 
various approximations. 

3.1.  2` = ~ ,  ~ F in i te  

We consider first the limit )~ ~ ce, x finite which corresponds to (1.1) in 
the limit of zero temperature. In this limit, the first term in (2.8) can be 
neglected and the ground state is that configuration (in a basis which 
diagonalizes Om ~ at each site) which minimizes 

E 0  = - ( 3 . 1 )  
m 

This corresponds to the energy of one-dimensional Ising chain with ferro- 
magnetic nearest- and antiferromagnetic next-nearest-neighbor interac- 
tions. This problem has been solved by Stephenson (31) and Hornreich 
et al. (s) 

The nature of the ground state depends on x. For x < 1/2, the ground 
state is ferromagnetic and twofold degenerate, the states being distin- 
guished by the ferromagnetic order parameter 

F F =  limM~ M1 (~,~=]~,~z) (3.2) 

where ( . )  denotes an expectation value with respect to the ground state 
wave function and M is the number of sites. 

For K > �89 the ground state consists of alternate pairs of up (a,~ = 1) 
and down (Om ~ = -- 1) spin. This corresponds to the (2, 2)-antiphase state ~6) 
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of (1.1). A suitable order parameter is 

FA lim ~ - ( ~ _ _  ) = iq z (3.3) 
M--->oo - M "  = 1  e morn 

where qm = (2~rm - 1)//4. Note that in this case, I" A is complex and hence 
the antiphase is characterized by a two-dimensional order parameter. (~1) 
The degeneracy of the ground state itself is four. 

At ~ = �89 the ground state is highly degenerate. Inspection of (3.1) 
shows that if we start with one of the ferromagnetic ground states we may 
reverse without cost in energy any number of spins as long as we break 
twice as many next-nearest-neighbor bonds as nearest-neighbor bonds. 
Thus the ground states consist of any arbitrary sequence of alternatively 
"up" and "'down" domains, the domains consisting of at least two spins. 
For a chain of M sites with free ends, Redner (32) has shown that the 
number of such states is 2FM+I,  where F k is the kth Fibonacci number 
generated by 

Fk+ 2 = Fk+ 1 + Fk, F l = F 2 = 1 (3.4) 

For periodic boundary conditions, which will be of more interest to us, we 
show in Appendix A that the degeneracy of a chain of M = 4t sites is 

( 4 t - 2 v - 1 ) !  
a( t )  = 2 + 8t__~ 1 (~-p)i~-_2-4-~) ! (3.5) 

We note that in the limit M--> oo, the residual entropy per site, 

S =  lim l l n ~ 2 ( t ) = I n [ ( 1  + ~ - ) / 2 ]  (3.6) 
t--> oo 

which agrees, as expected, with Redner's result and also with that found 
from the exact expression (5'31) of the free energy of (3.1) in the limit T-->0 
and k = 1/2. 

3 .2 .  ;~ = O, K F i n i t e  

The other trivial limit of (2.8) is 2~---)0, corresponding to the high- 
temperature limit of (1.1). Here the ground state of (2.8) is nondegenerate; 
the ground-state wave function d9 0 being such that aX~o = (I) o for all m. 
Alternatively, this state can be described as the ferromagnetically ordered 
ground state of the dual Hamiltonian (2.10). This leads us to introduce the 
dual-order parameter 

F o ---- lim 1 M ~  -M ( / ~ )  (3.7) 


